If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-1590=0
a = 3; b = 6; c = -1590;
Δ = b2-4ac
Δ = 62-4·3·(-1590)
Δ = 19116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19116}=\sqrt{324*59}=\sqrt{324}*\sqrt{59}=18\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-18\sqrt{59}}{2*3}=\frac{-6-18\sqrt{59}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+18\sqrt{59}}{2*3}=\frac{-6+18\sqrt{59}}{6} $
| 10-8x=-54 | | s+7612=15,000 | | 3x(x-30)+2x=540 | | 200=-w+5 | | 7x+3/2-2=5x+4/5 | | 22=v/2+15 | | 232-y=62 | | 0.25x+1.5-x-3.5=x | | 1/3h-4(2/3h-3)=2/3h-6= | | 3(x+2)-4(x-3=2x-6 | | -1/7y+y=18 | | 55-u=241 | | 142=-v+281 | | 22=b+14 | | 5y-2=78 | | 3c−7=−c+1 | | y/5-17=26 | | 6x+2+3x-5=7x-6 | | 2a+10=4a-20 | | 8(3a+6)=9(2a-4)= | | -9c=8−7c | | -4-7k=1-8k+2k | | w/9=-33 | | 60/(2x-4)=3 | | 24-3c=6 | | 3x+14=5x-2=180 | | -5p^2+5p-9=0 | | -5p^2+50-9=0 | | 3y-8=35 | | b=2.5b+45 | | 2(4r+6)=2/3(12r+18) | | 180=90+x |